e-peas launches PMIC targeting energy harvesting

Date
11/02/2016

 PDF

The AEM10940

The AEM10940 utilizes e-peas proprietary energy management technology in order to maximize the efficiency with which electronic hardware draws energy from the ambient environment. This device, which is now in full scale production, is set to have major implications for the various power-frugal sensing applications currently emerging – including those covering all aspects of the Internet of Things (IoT), wearable technology, home automation, industrial monitoring and wireless geolocation, etc.

The AEM10940 will be pivotal in meeting the demands of a host of new systems where every mJ of energy is certain to be precious. The versatility of this IC means it will work with all types of DC energy harvesting apparatus and all types of energy storage technology. Through its specification, engineering teams will be able to dramatically lengthen their systems’ battery lives. In many cases, it will even permit the elimination of the primary energy storage resource completely, thereby resulting not only in significant space savings being derived, but also avoiding the heavy expense of carrying out maintenance work in what are often inaccessible places.

The AEM10940 is an integrated energy management subsystem that extracts DC power from PV cells or TEGs to simultaneously store energy in a rechargeable element and supply the system with two independent regulated voltages. This allows product designers and engineers to extend battery lifetime and ultimately get rid of the primary energy storage element in a large range of wireless applications like industrial monitoring, geolocation, home automation, wearables…

The AEM10940 harvests the available input power from 1 μW to 50 mW. It integrates an ultra-low-power Boost converter to charge a storage element, such as a Li-Ion battery, a thin film battery or a super- or conventional capacitor. The Boost converter operates with input voltages in a range of 100 mV to 2.5 V. With its unique cold-start circuit, it can start operating with an empty storage element at an input voltage as low as 380 mV and an input power of just 11 μW.

The low voltage supply typically drives a microcontroller at 1.8 V. The high voltage supply typically drives a radio transceiver at a configurable voltage. Both are driven by highly efficient LDO (Low Drop-Out) regulators for low noise and high stability.

Configuration pins determine various operating modes by setting predefined conditions for the energy storage element (overcharge or overdischarge), and by selecting the voltage of the high voltage supply. However, special modes can be obtained at the expense of a few configuration resistors.

The chip integrates all the active elements for powering a typical wireless sensor. With only seven external components, integration is maximum, footprint and BOM are minimum, optimizing the time-to-market and costs of WSN designs in all markets.

Five identical capacitors and two inductors are required, available respectively in the small 0402 and 0603 SMD formats. The AEM10940 comes in one packaging option, with 24 pins, using space-saving quad-flat-no-leads packages (QFN).

The AEM10940

e-peas

RELATED

 



-->