0.45um GaN Power Process Intended for 5G Applications

Date
06/08/2018

 PDF
The NP45-11 technology provides 50-volt operation with superior power density and efficiency for demanding 5G infrastructure such as MIMO antenna systems....

Tao Yuan, Taiwan -- WIN Semiconductors Corp has expanded its gallium nitride (GaN) process capabilities to include a 0.45um-gate technology that supports current and future 5G applications. The NP45-11 GaN-on-SiC process allows customers to design hybrid Doherty power amplifiers used in 5G applications including massive MIMO (multiple-input and multiple-output) wireless antenna systems. Similar to macro-cell applications, MIMO base stations often combine Doherty power amplifiers with linearization techniques to meet demanding linearity and efficiency specifications of today's wireless infrastructure.

GaN devices outperform the incumbent LDMOS technology, offering superior efficiency, instantaneous bandwidth and linearity, particularly in the higher frequency bands utilized in 5G radio access networks.

Ideal for use in sub-6 GHz 5G applications including macro-cell transmitters and MIMO access points, the NP45-11 technology supports power applications from 100 MHz through 6GHz. This discrete transistor process is environmentally rugged, incorporating advanced moisture protection and meets the JEDEC JESD22-A110 biased HAST qualification at 55 volts. Combined with WIN Semiconductors’ environmentally rugged high voltage passive technology, IP3M-01, the NP45-11 technology enables hybrid power amplifiers in a low cost plastic package.

The NP45-11 technology is fabricated on 100mm silicon carbide substrates and operates at a drain bias of 50 volts. In the 2.7GHz band, this technology provides saturated output power of 7 watts/mm with 18 dB linear gain and more than 65% power added efficiency without harmonic tuning.

"5G radio access networks create several challenges to power amplifier designs used in MIMO systems. High output power and linear efficiency are primary design objectives to meet performance specifications and lower total cost of ownership. The tradeoff between output power and linearized efficiency is significant because of the high peak-to-average power ratio employed in today’s wireless modulation schemes. This tradeoff becomes more difficult in 5G applications due to greater instantaneous bandwidth requirements and higher operating frequency," said David Danzilio, Senior Vice President of WIN Semiconductors Corp.

NP45-11 sample kits are available and can be obtained by contacting WIN’s regional sales managers.

For more information, visit WIN Semiconductors Corp. at www.winfoundry.com

RELATED

 



-->