Renewable Energy

Current
Atomically Precise Models Improve Fuel Cell Understanding

The initial positions of the atoms in this computer model of a solid-oxide fuel cell were based on observations of the actual atomic configuration using electron microscopy. Simulations using this model revealed a previously unreported reaction (red path) in which an oxygen molecule from the yttria-stabilized zirconia layer (layer of red and light blue balls) moves through the bulk nickel layer (dark blue balls) before forming OH on the nickel surface.

Simulations from researchers in Japan provide new insights into the reactions occurring in solid-oxide fuel cells by using realistic atomic-scale models of the active site at the electrode based on microscope observations as the starting point. This better understanding could give clues on ways to improve performance
. . . Read More
Date:
07/19/2019
Research Shows Black Plastics Could Create Renewable Energy

The process by which plastics are converted to carbon nanotube material.

Research from Swansea University has found how plastics commonly found in food packaging can be recycled to create new materials like wires for electricity - and could help to reduce the amount of plastic waste in the future. While a small proportion of the hundreds of types of plastics can be recycled
. . . Read More
Date:
07/16/2019
How to Finance Solar Power

Cover for 'Solar Power Finance without the Jargo'.

To borrow a quote from the famous 2011 publication, Sapiens: A Brief History of Humankind, "3,766,800 exajoules of solar energy arrive on earth each year"--but how much of it are we using? And since Earth receives such a huge dose every year for free almost everywhere, why does it still only
. . . Read More
Date:
07/08/2019

Activity of Fuel Cell Catalysts Doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has succeeded in optimizing the size of platinum nanoparticles for fuel cell catalysis so that the new catalysts are twice as good as the currently best commercially available processes. The picture shows the first authors: Dr. Batyr Garlyyev, Kathrin Kratzl, and Marlon Rueck (f.l.t.r.).

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today. Fuel cells may well replace batteries as the power source
. . . Read More
Date:
07/03/2019
Danish Researchers Create Worldwide Solar Energy Model

The graphic shows the total solar energy production for all European countries in the period 2013-2017. Each tiny field represents a week's energy production: The brighter the color the more energy was produced.

Solar cells are currently the world's most talked-about renewable energy source, and for any future sustainable energy system, it is crucial to know about the performance of photovoltaic systems at local, regional and global levels. Danish researchers have just set up an historically accurate model, and all
. . . Read More
Date:
07/01/2019