Analog Devices Announces Industry's First Octal Ultrasound Receiver with Digital I/Q Demodulator and Decimation Filter


The AD9670 octal ultrasound receiver captures and conditions ultrasound RF signals to ease FPGA processing burden in cart-based and portable ultrasound equipment.

Click image to enlarge

Analog Devices has introduced the industry's first octal (eight-channel) ultrasound receiver with on-chip digital I/Q demodulation and decimation filtering. Because of the embedded demodulation and decimation feature, ADI's AD9670 is the first ultrasound receiver able to condition eight channels of data from RF to a baseband frequency, reducing the processing load on the system FPGA (field-programmable gate array) by at least 50 percent compared to other receivers. The AD9670 also integrates a low-noise amplifier, variable gain amplifier, anti-aliasing filter, and a 14-bit, A/D converter with the industry's highest sample rate (125 MSPS) and best SNR (signal-to-noise ratio) performance (75 dB) for enhanced ultrasound image quality. The new octal receiver is the latest addition to Analog Devices' award winning ultrasound receiver portfolio and is designed for mid- to high-end portable and cart-based ultrasound systems. The integrated digital I/Q demodulator, programmable-oscillator and 16-tap FIR (finite-impulse response) decimation filter of the AD9670 reduce the FPGA's data bandwidth requirements, allowing designers to use less expensive processors or reallocate processing bandwidth to other system functions. The new receiver also provides a continuous wave (CW) processing path with an analog I/Q demodulator that has harmonic rejection to the 13th order, which allows designers to reduce the number of filter components to lower system cost, reduce design complexity, and improve signal sensitivity. The CW-mode output dynamic range is more than 160 dBc/ ?Hz per channel. Additionally, the AD9670 octal receiver's 30-MHz anti-aliasing filter frequency and 125-MSPS A/D converter sample rate combine to yield SNR performance that is 3-dB higher than competing devices. The 14-bit A/D converter also features a programmable clock, data alignment, and programmable digital test pattern generation, including built-in fixed and pseudo random patterns and custom user-defined test patterns, entered via a serial port interface. Total power is 130-mW per channel, while an eight-channel low-noise amplifier reduces input-referred noise to just 0.78 nV/?Hz typical at 5 MHz (gain = 21.3 dB). "By introducing the first octal ultrasound receiver with digital demodulation and decimation filtering, we are able to minimize the data I/O and throughput rates and place less stress on the system processor," said Pat O'Doherty, vice president, healthcare segment, Analog Devices. "At the same time, by extending the anti-aliasing filter frequency range and maintaining a high A/D converter sample rate, we are continuing to help medical and industrial ultrasound equipment manufacturers meet the trend toward higher frequency probes and superior image quality." AD9670 Octal Ultrasound Receiver Key Features

  • Digital I/Q demodulator with programmable oscillator
  • FIR decimation filter
  • 14-bit, 125-MSPS A/D converter
  • 8-channel LNA, VGA, AAF, ADC
  • Low power
  • Noise: 0.78 nV/?Hz typical at 5 MHz (gain = 21.3 dB)
  • Harmonic rejection to 13th order on CW-Doppler signals
Availability, Pricing and Complementary Components The AD9670 octal receiver with integrated digital demodulation and decimation filtering is pin-similar to ADI's AD9278 and AD9279 octal receivers, allowing designers to upgrade cart-based and portable ultrasound equipment designs using a common PCB board