Breakthrough synthesis method to speed commercialization of graphene

Date
04/08/2014

 PDF

Grafene consists of a single layer of carbon atoms

Samsung Electronics announced a breakthrough synthesis method to speed the commercialization of graphene, a unique material ideally suited for electronic devices. Samsung Advanced Institute of Technology (SAIT), in partnership with Sungkyunkwan University, became the first in the world to develop this new method.

"This is one of the most significant breakthroughs in graphene research in history," said the laboratory leaders at SAIT's Lab. "We expect this discovery to accelerate the commercialization of graphene, which could unlock the next era of consumer electronic technology."

Graphene has one hundred times greater electron mobility than silicon, the most widely used material in semiconductors today. It is more durable than steel and has high heat conductibility as well as flexibility, which makes it the perfect material for use in flexible displays, wearables and other next generation electronic devices.

Through its partnership with Sungkyungkwan University's School of Advanced Materials Science and Engineering, SAIT uncovered a new method of growing large area, single crystal wafer scale graphene. Engineers around the world have invested heavily in research for the commercialization of graphene, but have faced many obstacles due to the challenges associated with it. In the past, researchers have found that multi-crystal synthesis – the process of synthesizing small graphene particles to produce large-area graphene – deteriorated the electric and mechanical properties of the material, limiting its application range and making it difficult to commercialize.

The new method developed by SAIT and Sungkyunkwan University synthesizes large-area graphene into a single crystal on a semiconductor, maintaining its electric and mechanical properties. The new method repeatedly synthesizes single crystal graphene on the current semiconductor wafer scale.

Phys.org

RELATED

 



-->