High Power Semiconductor Lasers for Lidar Transceivers


High power SOAs and NLW-Lasers Improve Range and Sensitivity of Coherent Lidar Transceivers for Autonomous Vehicles

NeoPhotonics Corporation announced that it is sampling high-power Semiconductor Optical Amplifiers (SOAs) and Narrow Linewidth (NLW) Distributed Feedback Lasers (DFB) lasers for long range automotive Lidar (“light detection and ranging”) applications.

NeoPhotonics SOAs and NLW lasers operate in eye-safe wavelength regions, and these offerings feature 1550nm wavelength SOAs with >24 dBm (>250mW) output power along with 1550nm NLW-DFB lasers that enable automotive Lidar systems to “see” considerably farther than 200 meters, thereby significantly enhancing safety.

Current Lidar systems for autonomous vehicles use expensive discrete optical components and employ direct detection measurement of the reflected light intensity, which limits range and sensitivity.  Next generation Lidar systems will use “coherent” technology, which was pioneered by NeoPhotonics for communications networks, to greatly increase the range and sensitivity by measuring the phase of the reflected light.  Coherent Lidar systems are fabricated using chip-scale manufacturing to reduce costs and enable high volume.  

Chip scale manufacturing requires coherent Photonic Integrated Circuits (PICs) powered by low phase and intensity noise semiconductor lasers and high output power semiconductor optical amplifiers.  Narrow linewidth and low phase noise lasers enable the precise phase measurements required by coherent detection and optical amplifiers to boost the optical signal power for long reach detection.  When combined with coherent PIC receivers, high power SOA and NLW-DFB laser enable coherent Lidar transceivers for high volume manufacturing.

For additional information, visit www.neophotonics.com.