
Large-scale simulations demonstrate that chaos is responsible for stochastic heating of dense plasma by intense laser energy. This image shows a snapshot of electron distribution phase space (position/momentum) from the dense plasma taken from PIC simulations, illustrating the so-called "stretching and folding" mechanism responsible for the emergence of chaos in physical systems.

Left) Schematic representation of the central part of the graphene-based THz photodetector device, containing the hBN-encapsulated graphene channel, on top of the narrow-gap antenna structure. By applying distinct voltages to the left and right antenna branches, a pn-junction is created in the graphene channel with unequal Seebeck coefficients on the left and right of the junction. Incident light is focused by the antenna above the gap, which is where the photoresponse is generated. (Right) Measurement of a THz focus, obtained by scanning the THz detector in the plane of the focus. The observation of several rings of the Airy pattern indicate the high sensitivity of the detector.