Technical Features

May 2022
QSPICE: A Mission to Get SPICE Right

Click image to enlarge

Figure 1: MOSFET channel punch-through showing outputs from previous SPICE simulators vs. QSPICE

Qorvo’s QSPICE™ simulator for analog and mixed-signal simulation provides power designers with the tools to confidently evaluate their designs. Free to use, QSPICE improves SPICE basics, supports large amounts of digital logic without performance penalties, and delivers the speed and accuracy needed for rel
Date:
11/29/2024
Meeting Power Management Enhanced Efficiency, Reliability and Safety Requirements

Click image to enlarge

Figure 1. General Block Diagram of a Switch Mode Power Supply (SMPS)

­Power conversion, isolation and accurate current measurement along with overvoltage/overcurrent circuit protection are necessary elements in a power supply design. Not only are these component solutions needed to help enhance reliability, but they are also required for regulatory compliance to help increase safe
. . . Learn More
Date:
05/31/2022
Extending Laptop Battery Life in Real-World Usage Scenarios

Click image to enlarge

Laptop battery life in the real World

­Introduction Laptop battery life estimates advertised by OEMs are rarely accurate, but they are a major selling feature for a product. Laptops that can last an entire day of use (10+ hours) on a single charge often command two to three times the price of a laptop that has a run time of a few hours. A lot
. . . Learn More
Date:
05/18/2022
Drive Your Power Applications to the Next Level with GaN

Click image to enlarge

Figure 1: The block diagram of the MDC901 GaN gate driver

­The entire ecosystem surrounding GaN HEMTs, which includes active and passive components like gate drivers, inductors and capacitors as well as the design techniques to implement the devices effectively, must quickly evolve to realize GaN’s full potential. As the device directly controlling the GaN HEMTs, th
. . . Learn More
Date:
05/01/2022
Precision Ultra-Low-Power High-Side Current Sense

Click image to enlarge

Figure 1. Precision high-side current sense circuit based on the LTC2063 zero-drift amplifier

­Precision high-side measurement of microamp currents requires a small value sense resistor and a low offset voltage amplifier. The LTC2063 zero-drift amplifier has a maximum input offset voltage of just 5 µV and draws just 1.4 µA, making it a great choice for building a complete ultra low power, precision hi
. . . Learn More
Date:
05/01/2022
A Look at the Advantages of 4th Generation SiC MOSFETs

Click image to enlarge

Figure 1: The evolution of process technologies improves upon the trench gate structure for a lowered on-resistance per unit area

­Power is arguably the most critical part of next-generation electric vehicles, alternative energy systems, and data centers, and industrial power supplies are increasingly reliant on efficient operations to save on energy costs and increase the effectiveness of their subsystems/equipment. In these applications, eve
. . . Learn More
Date:
05/01/2022
Optimizing Data Center Intermediate Bus Voltage for Significant System Efficiency Improvements

Click image to enlarge

Figure 1: Data center energy use has stayed flat even with exponential traffic increase. Source: IEA

­While system designers have worked to get more data throughput without proportionally increasing power draw, there has been equal pressure to squeeze better efficiency out of the power delivery system, to reduce losses, consequent costs and cooling system overhead. Power converter designers have responded wi
. . . Learn More
Date:
05/01/2022
Unlocking Super Compute Performance

Click image to enlarge

Figure 1. Power delivery and power efficiency has become the largest concern in large scale computing systems. The industry has witnessed a dramatic increase in power consumed by processors with the advent of ASICs and GPUs processing complex AI functions. Rack power has also subsequently increased with AI capability being utilized in large scale learning and inferencing application deployments. In most cases, power delivery is now the limiting factor in computing performance as new CPUs look to consume ever increasing currents. Power delivery entails not just the distribution of power but also the efficiency, size, cost and thermal performance

­The increasing complexity and variety of compute workloads demand immense processing capabilities. Whether used in a cloud data center or on-premise, a new breed of processors is able to increase throughput and reduce latency. However, processor advances are pushing power delivery boundaries. As a result, po
. . . Learn More
Date:
05/01/2022
Ensuring Resilience Within Power Applications

Click image to enlarge

Figure 1: 1200A MPE HEMP Filter

­In recent years strengthened legislation, particularly in the USA and the EU, has seen power and utility companies having to consider electromagnetic interference (EMI) and electromagnetic pulse (EMP) threats within their sites. Legislation now dictates that the resilience of power systems against interruption or
. . . Learn More
Date:
05/01/2022
Why Calculating Capacitor Lifetime Makes Sense

Click image to enlarge

Figure 1: An electrolytic capacitor essentially consists of an anode and cathode film, separator paper, and electrolytes

­Electrolytic and polymer hybrid capacitors have an almost identical design: they consist of a cathode side and an anode side, which in turn are both made of aluminum film. The film for the anode is subjected to an oxidation process, which creates an aluminum oxide layer forming the dielectric. Both films are ro
. . . Learn More
Date:
05/01/2022
50 Shades of Green for Legacy Data Centers

Click image to enlarge

Figure 1. Intelligent Rack PDUs for Powering, Monitoring, and Managing Critical Infrastructure

­Several decades ago “green” meant only one thing in a data center, a business-related conversation, money! Increasing margins, lowering costs, improving the bottom line, achieving the ideal EBITDA (earnings before interest, taxes, depreciation, and amortization). These were the only shades of green discussed in
. . . Learn More
Date:
05/01/2022
Direct Drive of SiC JFET – Extracting Maximum Performance

Click image to enlarge

Figure 1: Unipolar RDS∙A versus breakdown voltage data by technology (room temperature)

­The silicon carbide (SiC) JFET is arguably the most ideal switch technology for an application requiring minimum conduction loss, such as solid-state relay (SSR), solid-state circuit breaker (SSCB), and high power motor drive.  Its low on-resistance per unit area (RDS∙A) and fast switching compete well
. . . Learn More
Date:
05/01/2022
Archives